| Section 2
Dimensional Analysis

2.1 General. Dimensional analysis is essentially a
means of utilizing a partial knowledge of a problem
when the details are too obscure to permit an exact
analysis, See Taylor, E. 8. (1974). It has the enormous
advantage of requiring for its application a knowledge
only of the variables which govern the result. To apply
it to the flow around ships and the corresponding re-

sistanee, it is necessary to know only upon what var-
iables the latter depends. This makes it a powerful
tool, because the correctness of a dimensional solution
does not depend upon the soundness of detailed anal-
yses, but only upon the choice of the basie variables.
Dimensional solutions do not yield numerical answers,
but they provide the form of the answer so that every
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experiment can be used to the fullest advantage in
determining a general empirical solution.

2.2 Dimensional Homogeneity. Dimensional anal-
ysis rests on the basic principle that every equation
which expresses a physical relationship must be di-
mensionally homogenecus. There are three basic quan-
tities in mechanics-——mass, length and time—which are
represented by the symbols M, L, and 7. Other quan-
tities, such as force, density, and pressure, have di-
mensgions made up from these three basic ones.

Veloeity is found by dividing a length or distance
by a time, and so has the dimensions L/7T. Acceleration,
which ig the change in velocity in a certain time, thus
has dimensions of (L/T)/T, or L/T?

Force, which is the product of mass and acceleration,
has dimensions of M x L/T® or ML/T?.

As a simple case to illustrate the principle of di-
mensional analysis, suppose we wish to determine an
expression for the time of swing of a simple pendulum.

If T is the period of such a pendulum in vacuo (so
that there is no frictional damping), it could depend
upon certain physical quantities such as the mass of
the pendulum bob, m, the length of the cord, /, (sup-
posed to be weightless) and the arc of swing, s. The
forece which operates to restore the pendulum te its
original position when it is disturbed is its weight, mg,
and so the acceleration due to gravity, g, must be
involved in the problem.

We can write this in symbols as

T=f(mls g

where f'is a symbol meaning “is some function of.”
If we assume that this function takes the form of
a power law, then

T = mo lb 8° gn!

If this equation is to fulfill the principle of dimen-
sional homogeneity, then the dimensions on each side
must be the same. Since the left-hand side has the
dimension of time only, so must the right-hand side.

Writing the variables in terms of the fundamental
units, we have

T = M°L°L® (L/T%

Equating the exponents of each unit from each side
of the equation, we have

a =0
b+ece+d=20
—2d =1
Hence
d= —1/2
a=20
b+e=1/2

The expression for the period of oscillation 7 seconds
is therefore

T = constant X [V27° X §° X g2

= constant X /I/g X (/1

The solution indicates that the period does not de-
pend on the mass of the bob, but only on the length,
the acceleration due to gravity, and the ratio of length
of are to length of pendulum. The principle of dimen-
sions does not supply the constant of proportionality,
which must be determined experimentally.

The term (s/]) is a mere number, each quantity being
of dimension L, and dimensionally there is no restric-
tion on the value of ¢, We can therefore write

T = constant X /g x f(s/1) (2)

Although the form of the function fis undetermined,
it is explicitly indicated by this equation that it is not
the are g itself which is important, but its ratio to I:
i.e., the maximum angle of swing, s/{ radians.

The function fcan be found by experiment, and must
approach the value unity for small swings, so as to
lead to the usual formula for a simple pendulum under
such conditions:

T = constant X /I/g

The most important question regarding any dimen-
sional solution is whether or not physical reasoning
has led to a proper selection of the variables which
govern the result.

Applying dimensional analysis to the ship resistance
problem, the resistance R could depend upon the fol-
lowing:

(z) Speed, V.

(b) Size of bedy, which may be represented by the
linear dimension, L.

{c) Mass density of fluid, p (mass per unit volume)

(d) Viscosity of fluid, p

(e} Acceleration due to gravity, g

{f) Pressure per unit area in fluid, p

It is assumed that the resistance K can now be writ-
ten in terms of unknown powers of these variables:

B « p*V*L'u'gp’ 3)

Since £ is a force, or a product of mass times ac-
celeration, its dimensions are ML/T?.

The density p is expressed as mass per unit volume,
or M/L3

In a viscous fluid in motion the force hetween ad-
jacent layers depends upon the area A in contact, the
coefficient of viscosity of the liquid and upon the rate
at which one layer of fluid is moving relative to the
next one. If u is the velocity at a distance y from the
boundary of the fluid, this rate or velocity gradient is
given by the expression du/dy.

The total force is thus

F = pAdu/dy

du/dy being a velocity divided by a distance has di-
mensions of (L/T)/L, or 1/T, and the dimensional
equation becomes
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ML/T? = pl* x /T
or
w = M/LT

p is a force per unit area, and its dimensions are
(ML/T®/L? or M/LT:.

The ratio u/p is called the kinematic viscosity of the
liquid, v, and has dimensions given by

v =wulp=MLT)L*M) = LT
Introducing these dimensional quantities into Equa-
tion (3), we have

ML/T? = (M/L¥ (L/T) (LY (M/LTY
X (L/T% (M/LT? (4)

whence
a+d+f=1
—3a+bt+tc—dt+e—f=1
b+d+ 2+ 2f=2
or
a=1—-d-f
b=2-d— 2 ~ 2f
and
c=1+3a—-—b+d—e+f
=14+83-8d—-8-2+4d
+2+ef+d—e+f
=2—-d+e

Then from Equation (3)

- e T
=ever () () ()]
R pVLf[( o) ) G (5)
All three expressions within the brackets are non-
dimensional, and are similar in this respect to the s/{
term in Equation (2). There is therefore no restriction
dimensionally on the exponents d, ¢, and . The form
of the function £ must be found by experiment, and
may be different for each of the three terms.
Writing v for p/p and remembering that for similar
shapes the wetted surface S is proportional to L?
Equation (5) may be written
R f[VL gL p ]
%pSV? v’ V¥ pV?
where the left-hand side of the equation is a non-
dimensional resistance coefficient. Generally in this
chapter ® will be given in kN and p in kg/L (or t/m?,

although N and kg/m?® are often used (as here) in the
cases of model resistance and ship air/wind resistance.

(6)

¢ A term first suggested by Dr, E.V. Telfer.

Eqguation (6) states in effect that if all the parameters
on the right-hand side have the same values for two
geometrically similar but different sized bodies, the
flow patterns will be similar and the value of
R /% pSV? will be the same for each.

2.3 Corresponding Speeds. Equation (6) showed
how the total resistance of a ship depends upon the
various physical quantities involved, and that these are
associated in three groups, VL/v, gL/V?* and p/pV=

Considering first the case of a nonviscous liquid in
which there is no frictional or other viscous drag, and
neglecting for the moment the last group, there is left
the parameter gL/V? controlling the surface wave sys-
tem, which depends on gravity. Writing the wave-mak-
ing or residuary resistance as Rp and the cor
responding coefficient as C,, Cy can be expressed as

R
= sy = AVel) ™

Cr

This means that geogims® (geometrically similar bod-
ies) of different sizes will have the same specific re-
siduary resistance coeflicient Cj if they are moving at
the same value of the parameter V*/gL.

According to Froude's Law of Comparison®. “The
(residuary) resistance of geometrically similar ships is
in the ratio of the cube of their linear dimensions if
their speeds are in the ratio of the square roots of
their linear dimensions.” Such speeds he called cor-
responding speeds.® It will be noted that these cor-
responding speeds require V/\/L to be the same for
model and ship, which is the same condition as ex-
pressed in Equation (7). The ratio V,/y/L, commonly
with V, in knots and L in feet, is called the speed-
length ratio. This ratio is often used in presenting
registance data because of the ease of evaluating it
arithmetically, but it has the drawback of not being
nondimensional. The value of V/\/g_L, on the other
hand, is nondimensional and has the same numerical
value in any consistent system of units. Because of
Froude’s close association with the concept of speed-
length ratio, the parameter V/y/gL is called the Froude
number, with the symbol Fn.

When V, is expressed in knots, L in feet, and g in
ft/sec?, the relation between V/JZ' and Froude number
is

Fn = 0.298 VAL
or
V./\JL = 3.355Fn

* Stated in 1868 by William Froude {1955) who first recognized
the practical necessity of separating the total resistance into com-
ponents, based on the general law of mechanical similitude, from
observations of the wave patterns of models of the same form but
of different sizes.
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The residuary resistances of ship (Es) and of model
(R from Equation (7) will be in the ratio

% _ %PSSVSZCRS
Bou %PSMVMZCRN

where subscripts sand » refer to ship and model, re-
spectively.

If both model and ship are run in water of the same
density and at the same value of 173/gL, as required
by Equation (7), i.e.

(VeflgLs = (Vy)*/gLy
then Cr will be the same for each, and
Res/ Ry = Ss (VoF*/ Sy (Vi = (Ls)*/ (Lp)* Ls/ Ly
= (Ls*/(Ly)* = As/Ay (8)

where A and A, are the displacements of ship and
model, respectively.
) This is in agreement with Froude’s law of compar-
ison.

It should be noted from Equation (8) that at corre-
sponding speeds, i.e., at the same value of V/ VL

Rps/As = Rpy/Ay )

i.e., the residuary resistance per unit of displacement
is the same for model and ship. Taylor made use of
this in presenting his contours of residuary resistance
in terms of pounds resistance per long ton of displace-
ment (Section 8.6).

If the linear scale ratio of ship to model is A, then
the following relations hold:

Lg/Ly =

Ve/Vie = Ls /Ly = VA = AV2 (10)
Rps/Rpy = (Ls)s/(LM)3 = AS/AM =

The “corresponding speed” for a small model is much
lower than that of the parent ship. In the case of a 5
m model of a 125 m ship (linear scale ratio A = 25),
the model speed corresponding to 25 knots for the ship
is 25/AYz2, or 25/+/25, or 5 knots. This is a singularly
fortunate circumstance, since it enables ship models
to be built to reasonable scales and run at speeds which
are easily attainable in the basin.

Returning to Equation (6), consider the last term,
p/pV?2 If the atmospheric pressure above the water
surface is ignored and p refers only to the water head,
then for corresponding points in model and ship p will
vary directly with the linear scale ratio A. At corre-
sponding speeds V? varies with A in the same way so
that p/pV* will be the same for model and ship. Since

5 Thiz same law had previously been put forward by the French
Naval Constructor Reech in 1832, but he had not pursued it or
demonstrated how it could be applied to the practical problem of
predicting ship resistance (Reech, 1852).

the atmospheric pressure is usually the same in model
and ship, when it is included in p, so that the latter is
the total pressure at a given point, the value of
p/pV? will be much greater for model than for ship.
Fortunately, most of the hydrodynamic forces arise
from differences in local pressures, and these are pro-
portional to 7, so that the forces are not affected by
the atmospheric pressure so long as the fluid remains
in contact with the mode! and ship surfaces. When the
pressure approaches very low values, however, the
water is unable to follow surfaces where there is some
curvature and cavities form in the water, giving rise
to cavitation. The similarity conditions are then no
longer fulfilled. Since the absolute or total pressure is
greater in the model than in the ship, the former gives
no warning of such behavior. For tests in which this
danger is known to be present, special facilities have
been devised, such as variable-pressure water tunnels,
channels or towing basins, where the correctly scaled-
down total pressure can be attained at the same time
that the Froude condition is met.

In the case of a deeply submerged body, where there
is no wavemaking, the first term in Equation (6) gov-
erns the frictional resistance, R.. The frictional re-
sistance coefficient is then

Ry

Cr (11)

and Cr will be the same for model and ship provided
that the parameter VL/v is the same. This follows
essentially from the work of Osborne Reynolds (1883),
for which reason the product VL v is known as Rey-
nolds number, with the symbol Rn.

If both model and ship are run in water at the same
density and temperature, so that v has the same value,
it follows from (11} that Vg Ls = V), L, This condition
is quite different from the requirement for wave-mak-
ing resistance similarity. As the model is made smaller,
the speed of test must increase. In the case already
used as an illustration, the 5m model of a 125-m, 25-
knot ship would have to be run at a speed of 625 knots.

The eonditions of mechanical similitude for both fric-
tion and wave-making cannot be satisfied in a single
test. It might be possible to overcome this difficulty
by running the model in some other fluid than water,
so that the change in value of v would take account
of the differences in the VL product. In the foregoing
example, in order to run the model at the correct wave-
making corresponding speed, and yet keep the value
of VL/v the same for both model and ship, a fluid
would have to be found for use with the model which
had a kinematic viscosity coefficient only 1/125 that of
water. No such fluid is known. In wind-tunnel work,
similitude can be attained by using compressed air in
the model tests, so decreasing v and increasing VL/v
to the required value.

The practical method of overcoming this fundamen-
tal difficulty in the use of ship models is to deal with
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the frictional and the wave-making resistances sepa-
rately, by writing

Cr=Cp+ C; (12)

This is equivalent to expressing Equation (6) in the
form

Ry

(13)

Froude recognized this necessity, and so made ship-
model testing a practical tool. He realized that the
frictional and residuary resistances do not obey the
same law, although he was unaware of the relationship
expressed by Equation (11).

2.4 Extension of Model Results fo Ship To extend
the model results to the ship, Froude proposed the
following method, which is based on Equation (12).
Since the method is fundamental to the use of models
for predicting ship resistance, it must be stated at
length:

Froude noted:

(e} The model is made to a linear scale ratio of A
and run over a range of “corresponding” speeds such
that Vs/ Ls = Vi /L

(b) The total model resistance is measured, equal to

TM-

(¢) The frictional resistance of the model Ky, is cal-

culated, assuming the resistance to be the same as
that of a smooth flat plank of the same length and
surface as the model,

(d) The residuary resistance of the model REgy is
found by subtraction:

Bpy = Ry — Rew

{¢) The residuary resistance of the ship Ry, is cal-
culated by the law of comparison, Equation (10):

Rps = Rpy X A

This applies to the ship at the corresponding speed
given by the expression

VS = VM X Auz

(f) The frictional resistance of the ship Rz is cal-
culated on the same assumption as in footnote (4),
using a frictional coefficient appropriate to the ship
length.

(g) The total ship resistance (smooth hull) £ is then
given by

By = Big + Ryg

This principle of extrapolation from model to ship is
still used in all towing tanks, with certain refinements
to be discussed subsequently.

Each component of resistance will now be dealt with
in greater detail.



